Strategically using reproductive technologies to increase profitability

ARSBC Athens GA

Pedro L. P. Fontes

Department of Animal & Dairy Science

Assistant Professor

p: 706-542-9102

c: 850-573-8481

e: pedrofontes@uga.edu

What drives performance in cattle?

Use of reproductive technologies influences both!

Adoption of reproductive management strategies in the United States

Adoption of reproductive management strategies in the United States

Changes in the use of estrus synchronization and Al

U.S. Beef Semen Sales

What are we missing out when we fail to adopt reproductive technologies?

Genetic advantage of superior sires

Al-sire

WW EPD = +95 lbs

Natural Service Sire

WW EPD = +65 lbs

Predictability of proven sires

Possible Change of WW EPD at Varying Accuracies

WW 70 and Accuracy of 0.40: Actual EPD can range by 9.4 lb.

What are we missing out when we fail to adopt reproductive technologies?

Estrus synchronization and fixed-time Al: Beyond genetic improvement

Control — Natural mating

Impact of estrus synchronization on calving distribution

How does estrus synchronization influences calf performance?

	Treat	Treatment		
Item	Control	TAI		
No. of cows	615	582		
Weaning weight per cow exposed, lb	387 ± 8ª	425 ± 8 ^b		
^{ab} Means within row differ (P < 0.01)	38 lb. * 2.61	dvantage \$/lb. = \$99.18 exposed		

Impact of calving distribution on cow herd fertility

Impact of days postpartum on estrus expression and pregnancy rates

n = 1,280

Why do they breed back better?

A) When a cow breeds early

B) When a cow breeds late

Exploring variation in FTAI results between different herds

- n = 1541 postpartum cows
- 8 different herds exposed to Fixed-Time Artificial Insemination

Impact of Day of Conception on Replacement Heifers Performance

Effects of calving distribution on offspring performance

Heifer progeny

	Period of calving, 21 d intervals				
Item	1 st	2 nd	3 rd		
Preweaning ADG, lb	1.83	1.83	1.90		
Weaning weight, lb	483 ^a	470 ^b	434 ^c		
Prebreeding ADG, lb	0.90	0.90	0.90		
Prebreeding weight, lb	653 ^a	644 ^b	609 ^c		
Cycling, %	70 ^a	58 ^b	39 ^c		
Pregnancy rate, %	90 ^a	86 ^a	78 ^c		
Calved in 1 st 21 d, %	81 ^a	69 ^b	65 ^b		

Effects of Calving Date as Heifers on Lifelong Female Productivity - Fertility

Effects of Calving Date as Heifers on Lifelong Female Productivity - Longevity

Effects of Calving Date as Heifers on Weaning Weights

Early Conception and the Cycle of High Fertility

Examples of Successful Adoption of Reproductive Technology in the Southeast

Leveraging Active Reproductive Management

The North Florida Research and Education Center – Case Study

Dr. Cliff Lamb

- 1. Decrease the length of the breeding season (~10 days per year)
- 2. Culling non-pregnant and less fertile females
- 3. Keeping replacement heifers that conceive in the first 21 days
- 4. Intensive use of estrus synchronization

NFREC case study

Proactive reproductive management alters average age at weaning

Changes in fertility and calf value

Year	2006	2007	2008	2009	2010	2011	2012	2013
Pregnancy Rates	81%	86%	84%	86%	82%	94%	92%	93%

Value of artificial insemination when selling bred replacement heifers

Value of artificial insemination when selling bred replacement heifers

Carcass Value Change Based on Carcass Quality Grade

\$16.05/cwt

\$10.03/CWC

\$144.5 Per carcass

Value of artificial insemination when retaining ownership until harvest

Economic return calculate per cow exposed to the breeding season

Steer classification	% Choice		
NS Sire / NS Dam	61		
NS Sire / AI Dam	74		
Al Sire / NS Dam	85		
Al Sire / Al Dam	97		

How are we adding value to by incorporating reproductive technology?

- Genetic advantage of superior sires
 - Genetic merit
 - Predictability
- Change calving distribution
 - Short term vs long term consequences
 - Impact on male offspring
 - Impact on female offspring
 - Impact cow herd fertility

Thank you!

Pedro L. P. Fontes

Department of Animal & Dairy Science

Assistant Professor

425 River RD | The University of Georgia

Office 152

Athens, GA 30605

p: 706-542-9102

e: pedrofontes@uga.edu

