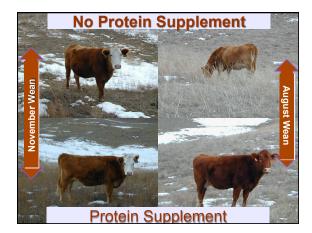
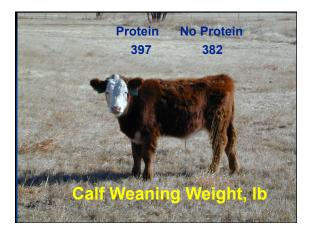
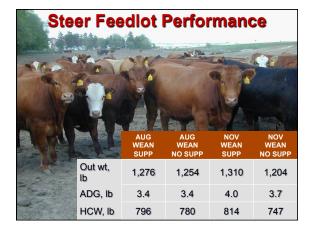

Weaning and Supplement Treatments for March Calving Cows


August weaning

- 1. No protein supplement during winter grazing
- 2. Protein supplement during winter grazing November weaning
 - 1. No protein supplement during winter grazing
 - 2. Protein supplement during winter grazing





	Augu	ist Wean	November Wean		
	Supp.	No Supp.			
Costs, \$/hd					
Feed	326	301	269	249	
Trucking	2	2	3	3	
Processing	25	25	25	25	
Total Cost			830	787	
Revenue, \$/he	d				
Steer	872	858	877	810	
Net/cow exp	-9	3		11	

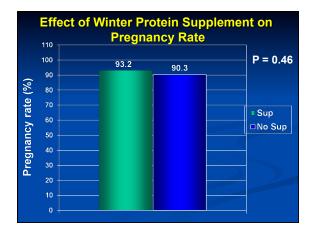
Objectives

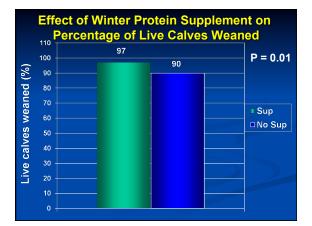
Determine if supplemental protein during late gestation or early lactation plane of nutrition of cows influences future growth or reproductive performance of their heifer calves.

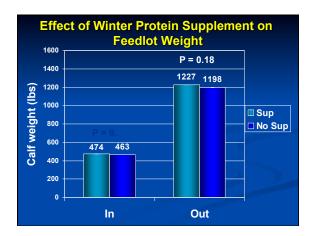
N

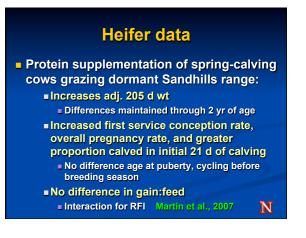
Materials & Methods

- Gudmundsen Sandhills Laboratory, Whitman, NE
- Red Angus x Simmental Cows
 3 to 5 yr of age
 - Calving season March 1 to April 20
- Natural service breeding


Ν


Materials & Methods Supplementation


- Treatments applied to dam
- Last trimester of gestation:
 - 1 lb/d of 42% CP cake delivered 3 times per week
 No supplement
- Early lactation
 - Dams grazed meadow or fed meadow hay after calving
- No further treatment applied to heifers

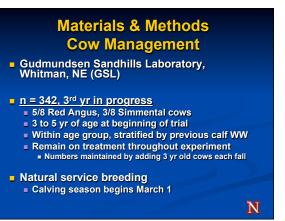


Effect of Prepartum Nutrition on Heifer Development				
3-yr	No Supplement	Supplement		
BW	77	79		
ww	455	469		
ADJ 205d Wt	480	499		
Preg Check Wt	851	882		

Pregnancy and Calving Data					
3- yr	No Supplement	Supplement			
Age at Puberty	334	339			
Cycling (%)	67	61			
Calved 1 st 21 d (%)	49	77			
Final Preg, %	08	93			
Calving Date	75	71			

R. N. Funston , J. L. Martin, D. C. Adams, and D.M. Larson

Objectives


 Determine if supplementing beef cows grazing range or corn residue during the last third of gestation affects cow or progeny performance.

Materials & Methods Completely randomized design 2 x 2 Factorial treatment arrangement Treatments applied only to dam <u>Winter grazing mid-Nov. to mid-Feb:</u> WR – winter range CR – corn crop residue

Last trimester of gestation:
 PS - 0.45 kg/d of 28% CP cake
 NS - No supplement

N

Supplement Composition DM Basis							
Dried distillers grains	62.0						
Wheat middlings	10.6						
Cottonseed meal	9.0						
Dried corn gluten feed	5.0						
Cane molasses	3.0						
Calcium Carbonate	3.0						
Urea	2.1						
VTM, binder, etc.	5.4						
Monensin, mg/kg	178	N					

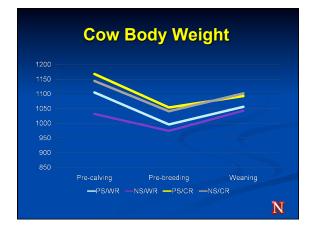
Materials & Methods Steer Progeny

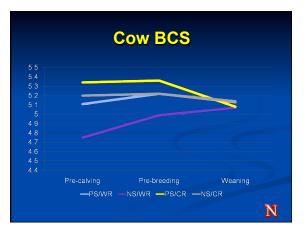
<u>n = 172</u>

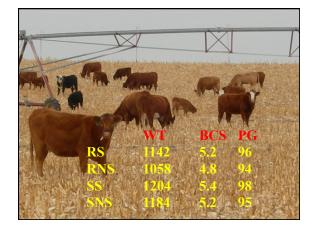
- Weaned at GSL
 - Transported to West Central Research & Extension Center, North Platte, NE (WCREC) feedlot 10 d later

N

■ 221 DOF


Materials & Methods Heifer Progeny

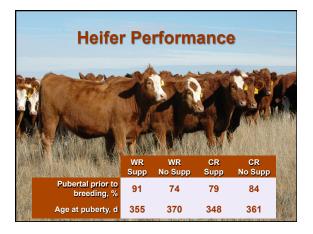

- n = 164
 - 3 yr reproductive data
 - 3 yr growth, FE data
- Weaned at GSL
 - Transported to WCREC 10 d later
 - Wintered in drylot
 - Heifers from WR cows individually fed
 - Heifers from CR cows pen fed
- Age and weight at puberty determined

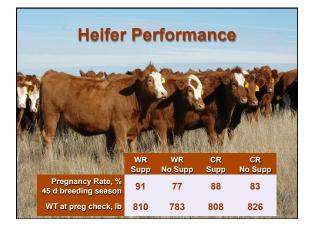

N

Transported back to GSL

Cow Performance

Cow Performance									
	Treatment				P-value				
	PS/ WR	NS/ WR	PS/ CR	NS/ CR	Sys	Sup	S*S		
Cow Weaning BW, Ib	1058	1045	1096	1105	<0.001	0.74	0.23		
Cow Weaning BCS	5.1	5.0	5.1	5.1	0.54	0.44	0.18		
Pregnancy Rate, %	96	94	98	95	0.46	0.20	0.95		
Calved 1 st 21 d	83ª	62 ^b	78 ^a	80ª	0.20	0.07	RP 3		





Heifer Performance								
		Tre	atment		P-value			
	PS/ WR	NS/ WR	PS/ CR	NS/ CR	Sys	Sup	S*S	
ADG	1.85ª	1.81ª	1.54 ^b	1.79ª	0.02	0.14	0.02	
DMI	16.5	17.0	15.9	16.3	0.74	0.95	0.16	
Gain:Feed	0.113ª	0.112ª	0.09 ^b	0.108ª	<0.01	0.03	0.02	
RFI, kg/d	-0.10	-0.06	0.03	0.21	0.19	0.40	0.61	
						N		

Conclusions

Grazing CR

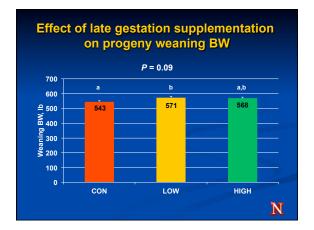
- Cow performance
 - Increased BW, BCS pre-calving
 - Increased calf birth weight
 - Increased BW, BCS pre-breeding
 - No affect on milk production
 - Increased cow BW at weaning
 No effect on pregnancy rate
- N

Conclusions

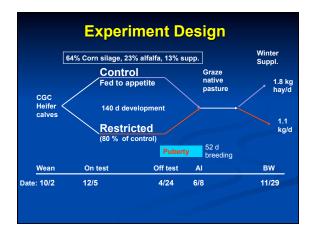
- Protein Supplementation
 - For cows grazing WR
 - Increased BW, BCS pre-calving
 - 7 d earlier calving date
 - 21 % more calving in 1st 21 d
 - Increased calf weaning BW and adj. 205 d BW

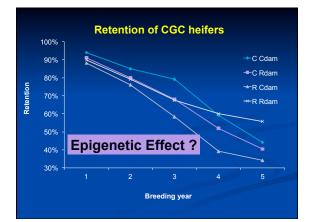
Ν

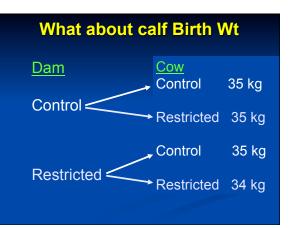
Conclusions

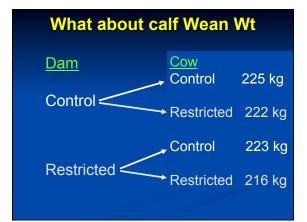

Protein Supplementation vs NS

- Decreased post weaning sickness
- Improved Quality grade in both systems
- Increased % pubertal before breeding
- Increased pre breeding BW for WR
- Improved pregnancy rates
- Decreased feed efficiency in heifer progeny


N







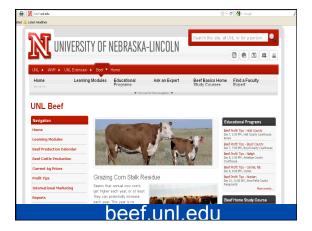
N

Restricted Heifer Development


- Improved efficiency
- Reduced feed/pregnant heifer
- Improved longevity?

Replacements from Restricted Cows

- Improved longevity († 5 & older)
- Improve drought resistance?
- Matching genotype with environment (↓ Milk?)


N

